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Abstract

The sorting problem is to arrange N values in a distributed system of N

processors into sorted order. Let the values be in (0, ..., L1. Every sort-

ing algorithm requires (N2 Is (L/N)/Ilg N) messages on a bidirectional ring

with N processors. Every sorting algorithm requires Q(N3 /2 Ig (L/N)/Ig N)

messages on a square mesh with N processors. A novel sorting algorithm for

unidirectional rings achieves the first lower bound.
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1. Introduction

To cooperate to solve a problem, the processors in a distributed comput-

ing system must communicate among themselves. For both large computer net-

works and VLSI architectures, however, the inclusion of a shared memory to

facilitate interprocessor communication is usually infeasible. The processors

in these distributed systems can communicate only by sending messages via a

network. Thus to exploit fully the potential efficiency of a distributed sys-

tem, an efficient algorithm should minimize the message traffic in order to

minimize the computation time.

The problem of finding an extremum - also called electing a leader - in

a distributed system is well solved (Dolev et al., 1982; Matsushita, 1983;

Peterson, 1982). Efficient distributed algorithms have also been proposed for

determining medians (Frederickson, 1983; Matsushita, 1983; Rodeh, 1982; San-

toro and Sidney, 1982), minimum spanning trees (Gallager et al.. 1983), shor-

test paths (Chandy and Misra, 1982), and maximum flows (Segall, 1982).

It is natural to ask whether these algorithms achieve the smallest possi-

ble message traffic for each problem. Let IS denote the logarithm taken to

base 2. For the extrema-finding problem Burns (1980) established a lower

bound of 0.23 N lg N messages in the worst case on a bidirectional ring.

Pachl etl, (1982) proved that 0.693 N lg N messages are necessary on the

average on a unidirectional ring. Apparently, lower bounds for no other prob-

lems have been discovered.

In this paper I derive lower bounds on the number of messages required to

arrange N values into sorted order. Let the values be in (0 . .... L). Every

sorting algorithm requires (N2 Is QN)) messages on a bidirectional ring
it N aae nabdrcinlrn

with N processors. Every sorting algorithm requires W(N 3 / 2 I N (LIN}) messages
IS N
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on a square mesh with N processors. Evidently fewer messages are necessary if

L is small than if L is large. t
Furthermore, I present a simple sorting algorithm on rings that achieves

the g(N2  Ig (LN)) lower bound. Within a constant multiplicative factor, this

algorithm is optimal. The algorithm of Korach et al. (1982) uses O(N2) mes-

sages to rank the values in a network, but does not rearrange the values.

Section 2 defines the computational model and the sorting problem. Sec-

tion 3 establishes the lower bounds on message complexity. Section 4

describes the optimal sorting algorithm for rings, and Section 5 presents

other sorting algorithms.
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2. Definitions

2.1. Comnutational Model

This paper adopts the model of distributed computation developed by San-

toro (1981). The model is asynchronous, requires decentralized control,

admits no shared memory, and permits data transfers only on a communication

network.

The distributed computing system comprises N identical processors con-

nected via a communication network. A link is an ordered pair of processors,

and a network is a set of links. Processor x can send a message directly to

processor y if and only if link (x, y) is in the network.

Every processor runs the same program. Initially, each processor knows

only the links that involve it and the overall topology of the network -- for

example, whether the network is a ring or a mesh.

Each of the processors has a distinct number representable with O(Ig N)

bits called its initial value. The processors exchange messages to compute a

function of these values. At the end of the computation, every processor has

a final value.

The transmission of a message incurs an unpredictable but finite delay,

and the state of a processor changes whenever it receives a message. At pro-

cessor y every message is placed on a queue when it arrives. Messages that

arrive simultaneously are queued arbitrarily. Messages sent on the same link

(x, y) arrive at y in the same order as they were sent.

JTo each processor assign an integer p, 0 1 p < N. For simplicity, to

obviate the phrase mod , also assign the integers p + N. p + 2N. ... to theI
I
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same processor p. The assignment of integers to processors is used only for

clarity of exposition; since the processors are identical, processor p does

not actually have immediate access to the number p. If integer p is assigned

to processor x and q is assigned to processor y, then the link (x, y) will be

written (p, q). The phrase "processor p" also denotes processor x.

I consider several topologies for the communication network. In a

bidirectional ring, processor p can send messages only to processors p - 1 and

p + 1. Formally, the bidirectional ring has links (p. p - 1) and (p, p + 1)

for every p. In a unidirectional tint, processor p can send messages only to

processor p + 1.

The discrete torus is a square mesh with wrap-around connections. Let N

U2 . For each processor p, 0 S p < N, write p - i + jM such that 0 . i < K

and 0 1 j < X. This equation defines a bijection between (0, ..., N - 1) and

pairs <i, j> in (0, .... M - 1)2 . Processor p can also be called processor

<i. j>. In the discrete torus, for every i and j there are links

(<i, p>, <i + 1, j>). (<i, p>. <i - 1. j>), M.i j>, (i, j + D>),

(<i, j>, <i, j - 1)), where i + 1 and j ± 1 are taken modulo M. For example,

ILLIAC IV had the topology of a discrete torus with N = 64.

A fully interconnected network has the link (x. y) for every pair of pro-

cessors x and y.

Each processor has O(lg N) bits of storage. This limit precludes trivial

algorithms. For instance, on a fully interconnected network, if processor p

had unbounded storage, then the other processors could ship their initial

values to processor p, which could compute all the final values.
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The limitation on storage implies that every message has O(lg N) bits.

There are no other constraints on the form of messages; in particular, a mes-

sage need not be one of the initial values. The limit on message length

prohibits arbitrarily long messages. If messages of unbounded length were

permitted, then for every solvable problem there would be an algorithm that

used O(N) messages after it elects a leader. For example, on a unidirectional

ring N long messages would suffice to send all the initial values to the

leader, which would perform the computation, and N more long messages would

suffice to distribute the final values from the leader to the other proces-

sors.

To evaluate the performance of a distributed algorithm, I assume that the

processing time within a processor is negligible. Indeed, because computation

within a processor generally proceeds much faster than transmission of mes-

sages, communication steps often dominate the running time of an algorithm

(Lint and Agerwala, 1981). The two performance criteria used in this paper

are expressed as functions of N. The message complexity of an algorithm is

the maximum, over all problem instances, of the total number of messages

passed among all the processors on that problem instance. This complexity

measure provides a worst-case estimate of the communication time. Abelson

(1980) and Papadimitiou and Sipser (1982) studied a similar measure for the

number of transmitted bits. The ideal execution time is the maximum, over all

problem instances, of the amount of time the computation would take on that

problem instance if the processors were synchronized and if every message

arrived one time unit after it was sent. This measure provides a lower bound

on the communication time. In the terminology of Nassimi and Sahni (1980),

the ideal execution time is the number of unit-routes.
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2.2. The Sortina Problem

Initially, for every p, processor p has a distinct initial value IV(p).

A sortinh altorithm rearranges these values so that at the end of the computa-

tion, processor p has a final value FV(p) such that for some b,

FV(b + i) ( FV (b + i + 1) for all 0 j i ( N-2.

Call processor b the base. The base processor has the smallest final value.

For a sorting algorithm A and a distribution of initial values, the des-

tination of a value v is the processor p such that at the end of the computa-

tion of A, the final value at processor p is FV(p) - v. The destination of a

value depends on which processor becomes the base.
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3. Lower Bounds

3.1. Preliminaries

Let SBS(Q) denote the set of finite sequences of binary strings

-... k) in which every component Pi is a string of at most Ig Q bits.

Lemma 1. There are fewer than 2(2Q)k sequences in SBS(Q) that have at

most k components.

Proof. Since each component in a sequence in SBS(Q) has at most lg Q

bits, the number of possible components is

2 + ... + 21g Q - 1 + 219 Q < 2Q.

It follows that the number of sequences in SBS(Q) with at most k components is

smaller than

I + 2Q + (2Q)2 + ... + (2Q)k I 2(2Q)
k 

.

Lemma 2. Let S be a set of a different sequences in SBS(Q). When each

occurrence of a string is counted, the total number of strings among the

sequences in S is at least

4

Proof. Set

k -=1 + LI 91)

By definition,

lg ('/10) > (k - 1) Ig (2Q),

a/5 2 2(2Q)k- l .

I
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Lemma 1 implies that at least 4/5 of the sequences in S have at least k com-

ponents each. The total number of strings among these sequences is at least

4 ak > 4 a 'a WJ1/)

I - 5 lg (2Q)

In a distributed computing system call the function p t-> IV(p) a distri-

bution. If P is a set of processors in the system, then the restriction of a

distribution d to P is the distribution for P induced by d. Distributions d1

and d2 agree on P if their values on P are the same; equivalently, the r-

triction of d1 to P is identical to the restriction of d2 to P.

Consider a partition of the processors in a system into two sets P s

P 2' The cut C induced by this partition is the set of all links (x, y) for

which either x a P1 and y e P2 or x g P2 and y a Pl.

Let A be a distributed algorithm that uses messages of at most c Ig N

bits each. Let C be a cut. During the computation by A for a distribution d

consider the sequence of messages transmitted on links in C in the order in

which they were sent. To each message a of this sequence append a string of

2 lg N bits that identifies on which of the at most N2 links in C message m

was sent. Call the resulting sequence of binary strings the signature of A

for d on C. The signature is in SBS(Nc+ 2 ).

Lema 3. Let C be a cut induced by a partition of the processors into

sets P1 and P2. Let D be a collection of distributions that agree on all pro-

cessors in P2 " If algorithm A has fewer than IDI different signatures on C

for the distributions in D, then for two different distributions in D, algo-

rithm A produces the same set of final values in P2.

Proof. By hypothesis, there are different distributions di and d2 in D

for which A has the same signature on C. For both dl and d2 the computation
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by A sends the same messages on the same links in C in the same order. From

the viewpoint of the processors in P2 the computation by A for dl is the same

as its computation for d2 ' Consequently, at the end of both computations the

final values in P2 are the same. 0

3.2. Rings

This section establishes a lower bound on the message complexity of sort-

ing in a bidirectional ring. The lower bound applies a fortiori to unidirec-

tional rings too.

Theorem 1. On a bidirectional ring of N processors with initial values

in (0, ..., LI, every sorting algorithm has message complexity Q(N2 'I (L/N)).
Ig N

In particular, if L = 2N, then Q(N2 /lg N) messages are necessary. If L =

N lg N, then Q( i g lg N/lg N) messages are necessary. If L = Ne for a con-

stant e > 1, then G(N2 ) messages are necessary.

Proof. Consider an algorithm A that arranges values into sorted order

using messages of length at most c lg N bits each. The main idea is the fol-

lowing: for some distribution of initial values, no matter which processor

becomes the base, approximately N/4 initial values must migrate at least dis-

tance N/16 to their destinations. But the destination of a value depends the

processor that becomes the base, which in turn depends on the initial values.

The bulk of this proof overcomes this circularity.

Define R = L/N. Without loss of generality, assume that R is an integer

and that N - 1 is divisible by 16. Define a collection of RN distributions of

initial values as follows. For p = 0. .... N - 1 the initial value at proces-

sor p satisfies
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S(p/2) R .~IV(p) <(p/2 + 1) R if p is even

((N +p)/2) R < IV(p) < ((N +p)/2 +1) R if p is odd

Example. (N = 17, R = 3)

IV(O) = 0 IV(5) = 33 IV(9) =39 IV(13) = 45

IV(l) = 27 P1(6) = 9 P1(10) =15 P1(14) = 21

IV(2) = 3 IV(7) = 36 P1(11) =42 P1(15) = 48

IV(3) = 30 P1(8) -12 IV(12) = 18 P1(16) = 24

IV(4) =6 13

Since the ring has N processors. there are only N possible bases. There-

fore there is a base b such that for at least RN/N of the distributions

defined by (1). processor b becomes the base during the computation by algo-

rithm A. Let D be this collection of RN/N distributions.

Put

q =6 (N - l)/16 + 1 + 2b

r = 10 (N - 1)/16 + 2b
(2)

s = 11 (N - W)16 + 1 + 2b

t = 5 (N - U)/16 + 2b

Let P 1 be the set of (N - l)/4 processors q. q + 1, .... r. Let P2 be the set

of 5(N - l)/8 processors s, s + 1, .... t. See Figure 1.

For the distributions in D processsor b becomes the base. Definition (1)

implies that for every p the destination of P1(p) is

processor b + p/2 if p is even,

processor b + (N + p)/2 if p is odd.

It follows that for p = q. q + 1, . .. , r. the destination of IV(p) is among

processors

b + (N + q)/2 -s. s + 1, .... b + r/2 -t.
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Thus each of the initial values in P1 must travel at least distance

1 + (N - 1)/16 to its destination in P2.

Let P'1 be the set of (3N + 3)/4 processors that are not in Pl. There

are R(3N+3 )/4 distributions for P', consistent with (1). Consequently there

is a distribution d0 for P'1 such that do is induced by at least

RN/N (N-I)/4

R (3 N+ 3 ) /4  N

of the distributions in D. Let D' be this subset of at least R(N-I)/4 /N dis-

tributions. The distributions in D' agree on P'" Let a = R(N-1) /4 /N.

Consider the following I + (N - )116 pairwise disjoint cuts, which

separate P1 from P2:

((q, q-1), (q-1, q), (r, r+l), (r+l, r)),

(3) ((q-1, q-2), (q-2. q-1), (r+l, r+2), (r+2, r+l),

N(q - 1 t), (t, q - (-1),

ly, 16

(r + (N-1), 3). (S. r +(N))

For each of the 1 + (N - 1)/16 cuts C in (3) the number of different signa-

tures of A on C must be at least ID'I 2 a because otherwise, by Lemma 3, there

would be two different distributions in D' that would yield the same set of

final values in P2 . Let Q - Nc+ 2 . Let M(C, d) be the number of messages used

by A on links in C for the initial distribution d. By Lema 2, for each of

the 1 + (N - )/16 cuts C in (3),

l (C ,d ) .4 o I n ( oZ 1 0)
d ' 5 IS (2Q)

hence

C i; (3) dD'16 C d )  (1 + 5 IS (2Q)

Therefore there exists a d1 in D' such that
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N (C~dl) , X (C,d))/o

C i (3) 1' C i (3)

• (1 + N - ) 4 11 (0/10)

9 5 1 (2Q)

(N + 15) (N- 1) la R - 4 Is (10 N)
16 5 lg (2Q)

2 N2 la R (N + 15) a (10 N)

80 Ig (2Nc+2) 20 Ig (2Nc+2 )

M2 ha R
IS N

Ergo, the message complexity of A is (N2 Ig R/lg N). 0J

This proof resembles the proofs of Thompson (1979), who established

time-space tradeoffs in VLSI. As Lipton and Sedgewick (1981) have observed,

Thompson's technique is analogous to a crossing sequence argument for Turing

machine complexity (Hopcroft and Ullman, 1979).

3.3. The Discrete Torus

A modification of the proof of Section 3.2 yields an Q(N3 / 2 hI (L1N))
IS N

lower bound on the message complexity of sorting on the discrete torus.

Consider a discrete torus with N processors. Let X = N1 /2 . Suppose the

initial value at every processor p satisfies (1) in Section 3.2. For the q,

r, s, and t defined by (2), the values among processors q, q + 1. ...P r must

migrate to their destinations at processors s, a + 1, ..., t. Let P1 be the

set of processors q, q + 1 .... r. Let P2 be the set of processors a, s + I,

.... t. It is easy to find a set of r(N - I)1(16 X)l pairwise disjoint cuts

that separate P1 and P2. As in Section 3.2, for every sorting algorithm,

there is some distribution for which the algorithm uses at least
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(N-)4 lz (alL0) (N 1) (N -) In R - 4 la (10 N)
(- 5 Ig (2Nc+2) 16 N5 Is (2Nc+2)

2 IN2 - 2N) li A - (N - 1) la (10 N)

80 N Ig (2NC+2) 20 X Ig (2N€+ 2)

Mi3 / 2 It
Ig N

messages.

Theorem 2. On a discrete torus of N processors with initial values in

(0 ..., L), every sorting algorithm has message complexity G(N3 /2 It (L/N)).
I& N

I

I
J
I
I
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4. Optimal Sorting

Section 4 and Section 5 present algorithms for the sorting problem. All

algorithms first employ an extrema-finding algorithm to elect a leader,

namely, the processor whose initial value is smallest. Message complexities

and ideal execution times for the extrema-finding problem are as follows:

message complexity ideal execution time

unidirectional ring 1.44 N lg N + O(N) 2N - 1
(Peterson, 1982)

discrete torus 0.72 N lg N + O(N) 6N11 2 - 3
(Matsushita, 1983)

fully interconnected network 4.4 N 2.88 lg N + 0(1)
(Matsushita, 1983)

4.1. Representina a Sorted Subset

Let S -( 1 ..... ak) be a nonempty subset of (0. .... L). Index the

elements of S so that a1 < a2 < ... < ak . Let 0 - 0. The set S can be

represented by the sequence (a1 - a0. a2 - a1, ... ak - akl). Encode this

sequence as follows. Vrite each aj - aj_ 1 in binary; then replace simultane-

ously

0 by 00 1 by 01

, by 10 ( and ) by 11.

Call this encoded result E(S). The length of E(S) is

J10 Ig (aj - aj) + 0(l)) bits.

By Jensen's inequality,

j~~IS (aj - &j-1) I lg ( j (aj - i1)

Thus the length of E(S) is at most
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2 ig 1 (aj - aj.1) + O(k) 2k 1S (1 jl(aj - aj-1)) + O(k)jT j

= 2k Ig (ak/k) + O(k) I 2k Ig (L/k) + 0(k).

If every a. were written out in binary, then S would be encoded with

k Is L + O(k) bits. When k is large, E(S) has fewer bits.

This encoding permits efficient insertion of a new value into S and effi-

cient deletion of the smallest value from S. To insert a value b such that

ai ( b < ai+1 , replace the encoding of ai+i - ai by the encoding of the subse-

quence b - ai , ai+l - b. To delete the smallest value a1 , replace the encod-

ing of the subsequence a1 , a2 - a1 at the beginning of E(S) by the encoding

of a2 *

4.2. A Sorting Algorithm on Unidirectional Rings

Consider a unidirectional ring of N processors with initial values is in

(0, ..., L). This section presents an algorithm that sorts these values by

successive insertions with O(N2 Is (L/N)/Ig N) messages. By Theorem 1, this

algorithm is optimal.

The algorithm employs the encoding E defined in Section 4.1. Let S C

(0, .... L] have k values. The encoding E(S) is transmitted as a sequence of

messages, each of length c Is N, where c is a constant. Thus the number of

messages used to transmit E(S) is

kIt (L/k) + 0(k), Is 2N Is CL/N) + O(N)

Sc IS N

since k & N I L.

I
I
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The algorithm comprises three phases.

During the first phase, the processors elect a leader. Without loss of

generality, assume that processor 0 is the leader.

To initiate the second phase, the leader sends E(IV(O)) to processor 1.

For p = 0, .... N - 1, define S(p) = (IV(0), ..., IV(p)). In general, during

the second phase, processor p receives E(S(p - 1)) from processor p - 1 and

sends E(S(p)) to processor p + 1. Since E(S(p - )) is an encoding of a

sorted set, processor p need not store all of E(S(p - 1)). Rather, processor

p inserts IV(p) into S(p - 1) at the appropriate point, as described at the

end of Section 4.1. At the end of the second phase the leader receives

E(S(N - 1)).

During the third phase, the processors successively remove the smallest

value from S(N - 1). For p = 0, .... N - 2, processor p receives an encoding

E(S) from processor p - 1. It defines FV(p) to be the smallest value in S and

sends E(S - (FV(p))) to processor p - 1. Section 4.1 shows that the encoding

E supports efficient deletion of the smallest value in the set. Processor N -

1 receives the largest value.

Theorem 3. On a unidirectional ring of N processors with initial values

in (0. .... L), suppose the election problem can be solved with p(N) messages

in ideal execution time v(N). Then the sorting problem can be solved with

O(N2 lg (L/N)/lg N) + p(N) messages and ideal execution time 2N + v(N) - 1.

Proof. Every processor transmits an encoding of a set during the second

phase and another encoding during the third phase. Therefore the algorithm

uses at most
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N 2N la (L/N- + O(N) - O(N2 lg (L/N)/Ig N)c 1S N

messages after it elects a leader.

During both the second and third phases, every processor p can transmit a

message to processor p + 1 as soon as it receives a message from processor

p - 1. The second phase runs in ideal time N. The third phase runs in ideal

time N - 1. Consequently the ideal execution time is 2N - 1 after the leader

has been elected. 0

I

I
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5. Other Sorting Algorithms

5.1. The Bidirectional Ring

Although the algorithm of Section 4.2 is optimal for a wide range of ini-

tial values, the odd-even transposition sort (lnuth, 1973) can be implemented

easily on a bidirectional ring of N processors with message complexity O(N2 ).

The implementation has three phases.

In the first phase the processors elect a leader. Without loss of gen-

erality, assume that processor 0 is the leader and that N is even. In the

second phase the leader initiates a message around the ring to deliver the

number N and to inform each processor whether its position p is odd or even.

In the third phase each processor executes the following program frag-

ment. At processor p. the initial value is IV, the final value FV. The pro-

cedure SEND (+: J. V) sends the two-part message (3, V) to processor p + 1,

and SEND (-: 3. V) sends the message (1, V) to processor p - 1. Procedure

RECEIVE (': V) waits until a message whose first part is J has entered the

message queue; the second part of this message is assigned to the variable V.

FV :- IV;
if p is odd then

for 3 :- I to N2 do
begin SEND (+; 23 - 1, FV); RECEIVE (23 - 1, V);

if V ( FV then FV :- V;
SEND (-; 2J, FV); RECEIVE (2J, V);
if V > FY then FY :- V

end
else if p is even and p # 0 then

for J :- 1 to N/2 do
begin SEND (-; 23 - 1, FY); RECEIVE (23 - 1, V);

if V > FV then FV :- V;
SEND (+; 23, FV); RECEIVE (23, V);
if V < FV then FY :- V

end
else (0 Program fragment for the leader C)

for J :- 1 to N/2 do
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begin SEND (-; 23 - 1, -); RECEIVE (23 - 1, V);
SEND (+; 2J. --); RECEIVE (2, V)

end

Sending 2J - I and 2J keeps the messages properly ordered. For example,

processor 3 may send a message with 2J = 10 to processor 2 before processor 2

receives a message with 23 - 1 - 9 from processor 1.

Theorem 4. On a bidirectional ring with N processors suppose the elec-

tion problem can be solved with #(N) messages in ideal execution time v(N).

Then the sorting problem can be solved with N(N + 1) + p(N) - 1 messages and

ideal execution time 2N + v(N) - 1.

Proof. The second phase uses N - 1 messages. In the third phase every

processor sends N messages, hence this phase uses N messages. Thus the algo-

rithm uses N2 + N - 1 messages after electing the leader.

The second phase runs in ideal time N - 1, and the third phase runs in

ideal time N. Therefore the ideal execution time of the algorithm is

2N + v(N) - 1. a

5.2. The Fully Interconnected Network

The well known merge-sort enjoys a straightforward implementation on a

fully interconnected network with N processors. For convenience assume that N

is a power of 2.

First, the processors elect a leader. Without loss of generality, assume

that processor 0 is the leader. Let P0 be the set of processors 0, ... 0

N/2 - 1. and let P1 be the set of processors N/2. .... N - 1. Using one mes-

sage, the leader designates processor N/2 the temporary leader of P1. Proces-

sor N/2 initiates the merge-sort recursively to sort the initial values in PI;
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simultaneously processor 0 initiates the merge-sort recursively to sort the

initial values in P0 " When each recursive invocation of this algorithm is

completed, the final values in P0 and P1 are in ascending order. Processor

N/2 sends the leader a message when P1 is sorted.

Next, the leader controls the merging of the values in P0 and Pi. Each

processor k has a temporary value TV(k) that will become its new final value.

The leader executes the following algorithm, which successively compares the

final values now at processors i and j and sends the smaller to processor k.

i := 0; j := N/2;
DONEO := false; DONEl :- false;
Obtain FV(N/2) from processor N/2;
for k := 0 to N-i do

if FV(i) < FV(j) or DONEl then
begin Send FV(i) to processor k, which sets TV(k) := FV(i);

i := i + 1;
if i < N/2 then Obtain FV(i) from processor i

else DONEO := true
end

else if FV(i) > FV(j) or DONEO then
begin Send FV(j) to processor k, which sets TV(k) := FV(j);

j := j + 1;
if j < N then Obtain FV(j) from processor j

else DONEI :- true
end

Finally, the leader sends a message to every processor p to set FV(p)

TV(p).

Observe that the leader needs to store only one value from P1 and only

one value from Po other than its own. Thus the number of bits of storage

required by the leader is O(lg N). Indeed, every processor needs only O(lg N)

bits of storage.

Let M(N) be the number of messages used by this algorithm on a fully

interconnected network with N processors, after the leader has been elected.

Then
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U(N) = 2 M(N/2) for recursive invocations of the algorithm
+ 2 to begin and end the recursive invocations
+ (N - 1) messages from the leader to each processor

p # 0 to obtain FV(p)
+ (N - 1) messages sending FV(p) to the leader
+ (N - 1) messages from the leader to each processor

k 0 0 to set TV(k)
+ (N - 1) messages from the leader to each processor

p # 0 to set FV(p) := TV(p)

Thus

M() = 0,
M1(N) = 2 M(N/2) + 4N - 1;

hence
M(N) j 4 N lg N.

Let T(N) be the ideal execution time of the algorithm. Then
T(N) = T(N/2) for recursive invocations of the algorithm

+ 2 to begin and end the recursive invocations
+ (N - 1) for messages from the leader to each processor

p # 0 to obtain FV(p)
+ (N - 1) for messages sending FV(p) to the leader
+ (N - 1) for messages from the leader to each processor

k # 0 to set TV(k)
+ 1 for messages from the leader to each processor

p # 0 to set FV(p) := TV(p)

Thus

T(1) 0.
T(N) T(N/2) + 3N;

hence
T(N) < 6 N.

Theorem 5. On a fully interconnected network with N processors suppose

the election problem can be solved with p(N) messages in ideal execution time

v(N). Then the sorting problem can be solved with at most 4 N lg N + p(N)

messages and ideal execution time less than 6N + v(N).

The algorithm uses many messages to initiate and end recursive invoca-

tions. These messages would be unnecessary if the system were synchronous.

The odd-even transposition sorting algorithm of Section 5.1 also runs on

a fully interconnected network. It has a smaller ideal execution time. but

i
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uses more messages.

5.3. The Discrete Torus

The algorithm of Nassimi and Sahni (1979), when implemented asynchro-

nously, uses O(N31 2 ) messages because each of the N processors sends at most

N1 12 messages. Therefore, when the initial values are in (0. ..., Ne for

some constant e > 1, this algorithm is optimal within a constant multiplica-

tive factor.
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